On the Inf-Sup Constant of a Triangular Spectral Method for the Stokes Equations

نویسندگان

  • Yanhui Su
  • Lizhen Chen
  • Xianjuan Li
  • Chuanju Xu
چکیده

A triangular spectral method for the Stokes equations is developed in this paper. The main contributions are two-fold: First of all, a spectral method using the rational approximation is constructed and analyzed for the Stokes equations in a triangular domain. The existence and uniqueness of the solution, together with an error estimate for the velocity, are proved. Secondly, a nodal basis is constructed for the efficient implementation of the method. These new basis functions enjoy the fully tensorial product property as in a tensor-produce domain. The new triangular spectral method makes it easy to treat more complex geometries in the classical spectral-element framework, allowing us to use arbitrary triangular and tetrahedral elements. AMS subject classifications: 65N35, 65N22, 65F05, 35J05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of a Finite Volume Scheme for the Incompressible Fluids

We introduce a finite volume scheme for the two-dimensional incompressible Navier-Stokes equations. We use a triangular mesh. The unknowns for the velocity and pressure are respectively piecewise constant and affine. We use a projection method to deal with the incompressibility constraint. We show that the differential operators in the Navier-Stokes equations and their discrete counterparts sha...

متن کامل

Conforming and divergence-free Stokes elements on general triangular meshes

We present a family of conforming finite elements for the Stokes problem on general triangular meshes in two dimensions. The lowest order case consists of enriched piecewise linear polynomials for the velocity and piecewise constant polynomials for the pressure. We show that the elements satisfy the inf-sup condition and converges optimally for both the velocity and pressure. Moreover, the pres...

متن کامل

Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems

Preconditioned iterative methods for the indefinite systems obtained by discretizing the linear elasticity and Stokes problems with mixed spectral elements in three dimensions are introduced and analyzed. The resulting stiffness matrices have the structure of saddle point problems with a penalty term, which is associated with the Poisson ratio for elasticity problems or with stabilization techn...

متن کامل

A Laguerre-Legendre Spectral Method for the Stokes Problem in a Semi-Infinite Channel

A mixed spectral method is proposed and analyzed for the Stokes problem in a semi-infinite channel. The method is based on a generalized Galerkin approximation with Laguerre functions in the x direction and Legendre polynomials in the y direction. The well-posedness of this method is established by deriving a lower bound on the inf-sup constant. Numerical results indicate that the derived lower...

متن کامل

A spectral method for the Stokes problem in three-dimensional unbounded domains

We present a method for solving the Stokes problem in unbounded domains. It relies on the coupling of the transparent boundary operator and a spectral method in spherical coordinates. It is done explicitly by the use of vector-valued spherical harmonics. A uniform inf-sup condition is proved, which provides an optimal error estimate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Meth. in Appl. Math.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016